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Abstract

We have computed the unsteady three-dimensional low
Reynolds number flow past a tapered cylinder. The
spanwise variation in natural shedding frequency re-
sults in interesting three-dimensional flow phenomena.
Our computed hot-wire and spectral data are very simi-
lar to experimental results. The computation was done
on the Connection Machine, a massively parallel com-
puter; we highlight the capabilities of the Connection
Machine for computation and visualization of three-
dimensional unsteady flow fields.

1 Introduction

We have two main goals in this paper. The first is to
showcase the capability of the Connection Machine, a
massively parallel computer, for computation and visu-
alization of three-dimensional unsteady flow fields. We
have implemented an algorithm for the unsteady three-
dimensional compressible Navier-Stokes equations and
will show computed results for low Reynolds number
flow past a tapered cylinder. We have also used the
Connection Machine for the flow visualization.

Our second goal is to study an interesting three-
dimensional flow problem. We have found it fascinating
and enjoyable to study the flow field and to speculate
about the mechanisms which produce the interesting
dynamics.

In the next section we quickly review the key fea-
tures of the Connection Machine and of the numerical
algorithm. Then we present the numerical algorithm
and the flow problem to be studied. Finally we show
our computed results and discuss flow visualization on
the Connection Machine.
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2 The Connection Machine

In this section we review the key features of the Connec-
tion Machine [5]. The Connection Machine is a single-
instruction, multiple data (SIMD) parallel computer.
There can be up to 65536 (64K) physical processing el-
ements, and each physical processing element can con-
figure itself so that it appears to consist of more than
one “virtual processor”. The number of virtual pro-
cessors per single physical processor is called the “VP
ratio”; this number must be a power of two, and it
is generally more efficient to have as high a VP ratio
as possible. For example, if we associate one virtual
processor with each grid point, if our grid is of size
64 x 64 x 32, and if we are using 8192 (8K) physical pro-
cessors, then our VP ratio is 64-64-32/8192 = 16. The
VP ratio is limited by the number of words of memory
of each physical processor; the machine at NASA/Ames
Research Center used for the work reported here had
32K physical processors, each with 2048 32-bit words
of memory. Thus if a user’s code requires 100 words
of storage per grid point (this counts all user-declared
variables, temporary variables generated by the com-
piler, and system space for flags, etc.), the maximum
VP ratio would be 16, the largest power of two less
than 2048/100. Numerical computations are done in
32-bit arithmetic.

For our purposes we can think of the processors as
arranged in a three-dimensional grid, one (virtual) pro-
cessor per grid point, with each processor connected
to its Cartesian nearest neighbors. Communication of
data is expensive, relative to computation, and commu-
nication of data from one processor to another which
is “far away” is generally to be avoided; the sole excep-
tion to this occurs when the two processors are a power
of two distance apart, in which case relatively efficient
communication is possible.

The user interface to the Connection Machine is via a
front-end computer, which can be either a VAX, a Lisp
machine, or a SUN workstation. Most of the work re-
ported in this paper was done via a Lisp machine front
end. We are currently moving to a SUN-4 front end;
this should yield improved speed, since the faster front
end computer can send instructions to the Connection



Machine more rapidly and can more rapidly perform
any calculations that are done in the front end.

The code used for the calculations reported in this
paper was developed on a VAX and Lisp machine. We
coded in the *Lisp language, an extension of Lisp for
parallel computing [11]. We found the Lisp program-
ming environment very useful and helpful in the code
development stage.

The code used for the flow visualization was also
written in *Lisp, and used the Connection Machine
frame buffer to display results. The flow variables were
periodically saved as the Navier-Stokes calculation pro-
ceeded. Later these saved solutions were used to define
velocity vector fields for unsteady particle trace ani-
mations. Three-dimensional unsteady flow calculations
give rise to very large amounts of data; every saved so-
lution field for a 64 x 64 x 32 calculation took up 2.6
Mbytes of disk space. We used the Connection Machine
Datavault, a mass storage device, and saved about 1500
solution fields.

3 Navier-Stokes Algorithm

We implemented an implicit, approximate-factoriza-
tion central-difference code for the full Navier-Stokes
equations. We are solving the laminar flow equations
with no thin-layer assumption. The three-dimensional
Navier-Stokes equations in generalized curvilinear coor-
dinates can be found in [9]. We can write the equations
as
Q¢ + B¢ + Fyy 4+ G¢ = viscous terms,

where @) is the vector of conserved variables, £, F', G
are the inviscid flux terms, and all the viscous terms
are on the right-hand side. We discretize the spatial
derivatives with central differences and use a general
three-point implicit time-stepping method [13]. Our
numerical method then looks like
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For 8 =1, ¢ = 0 we have implicit Euler time differenc-
ing, for § = 1, ¢ = 1/2 we have a three-point second-
order time differencing formula. The &, é,, 6¢ are cen-
tral differencing operators. Here AQ" = Q7! — Q™;
the matrices A, B, C on the left-hand side are eval-
uated at 7. We allow the addition of second and
fourth-order artificial dissipation terms to the right-
hand side of the equations; for the calculations reported
here we used no second-order dissipation, and only a

small amount of fourth-order dissipation. The matrices
A, B, and C' are the Jacobian matrices of the inviscid
flux functions plus additional terms intended to model
the viscous fluxes and artificial viscosity terms.

The implicit operator is approximately factored
as [13]
AL AL (AN
In this form the numerical algorithm would require the
solution of block banded systems of equations at each
time step. For a further reduction in the complexity
of the algorithm, we use a diagonal approximation [8],
which reduces the block solves to scalar solves. The
implicit operator becomes
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where A,, A, A; are diagonal matrices, and 75, N =
Tn_le’ P = Tg_ng, and T¢ are block diagonal ma-
trices with 5 x 5 blocks. The matrices T}, T¢, T are
the eigenvector matrices of the inviscid flux Jacobians;
they are known analytically. Thus the solution process
requires the inversion of scalar tridiagonal matrices in
the three coordinate directions 5, £, {, and four 5 x 5
matrix inversions (actually matrix-vector multiplies) at
each grid point.

The tridiagonal systems are solved by parallel cyclic
reduction [4, 5]. In this algorithm, we have each row of
the matrix associated with one processor. In parallel,
each processor forms a linear combination of the row
above it, its own row, and the row below it, with the
coefficients of the combination chosen so that zeros ap-
pear in the entries of the linear combination closest to
the main diagonal. Then the process repeats, with the
processors getting information at distance 277! rows
away at the n'? stage. Just the first step of this al-
gorithm does more arithmetic than Gaussian elimina-
tion (Thomas algorithm) does to solve the linear sys-
tem completely, but the parallel algorithm is ideally
suited for the Connection Machine as it finishes in only
1+ log, N stages for an N x N matrix. The last few
stages of the algorithm can involve long-distance com-
munication, and this can be a bottleneck. The amount
of long-distance communication can be decreased by an
“early cutoff” variant of the algorithm [4, 5].

We did some testing of the early cutoff algorithm
for our tapered cylinder problem and found savings in
wall clock time ranged from 10-20%; we did not use
the early cutoff variant in any of the calculations to
be reported here. Wall clock times for one step of the
code on a 64 x 64 x 32 grid are on the order of 4.6



to 6.5 seconds for a VAX front end, 2.8 to 5.1 seconds
for a SUN front end, and 2.7 to 5.2 seconds for a Lisp
machine front end; the lower numbers are for a VP ratio
of 8 (thus 16K processors), the higher numbers are for
a VP ratio of 16 (thus 8K processors). We found that
the tridiagonal solver took about 40% of the machine
time for the 64 x 64 x 32 problem on the VAX front end
and about 50% of the machine time on the SUN and
Lisp Machine front ends.

4 Flow Problem

We have numerically computed three-dimensional lam-
inar unsteady low Reynolds number flow past a ta-
pered cylinder. This flow illustrates a case of flow past
a body where the natural vortex shedding frequency
varies with spanwise location. This variation causes
interesting oscillations and “beating” in the flow down-
stream of the body. The pioneering work of Gaster was
reported in [3]. Recent experimental investigations of
this flow have been carried out by van Atta and Pic-
cirillo [12] and by Piccirillo [6, 7]. Gaster investigated
the flow about a tapered needle, while Piccirillo studied
the flow about a tapered cylinder. The parameters in
this problem are the Reynolds number and the taper
ratio. We normalize the Reynolds number by diameter
at mid-span of the cylinder. We define the taper ratio
as (do — d1)/H, where dg and d; are the diameters at
the base and at the top of the cylinder, respectively,
and H is the height of the cylinder. See Figure 1 for a
sketch of the geometry.
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Figure 1: Sketch of geometry (taper greatly exagger-
ated)

We generated grids essentially consisting of “O”-
grids about a two-dimensional cylinder stacked in the
spanwise direction. We clustered grid points in the

wake region and in the vicinity of the body; typical
grid spacing normal to the body was 0.005 (based on
a midspan diameter of 1.0). Figure 2 shows a slice
of a grid normal to the spanwise direction. The outer
boundary is typically 24 mid-span diameters away from
the body. Our inflow Mach number was usually 0.2.
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Figure 2: Section of grid

The numerical boundary conditions were as follows.
At the body surface we imposed the no-slip condition
on the velocity components, used linear extrapolation
for the pressure, and imposed a zero normal density
gradient. At the far field in the streamwise direction
we fixed all variables at inflow values at inflow points,
and at outflow points we extrapolated all variables from
the neighboring interior point. At the far field in the
spanwise direction we set the spanwise velocity to zero
and imposed a zero normal gradient condition on the
other primitive variables.

We define CFL number as
CFL = At-max  [J {|U]+¢[VE[z [V]+ [Vl
sk,
W+ ¢[VCl2Hjkt,

where J is the metric Jacobian, U = &;u + §v + & w,
V =neu+nv+nw W= Ceu+ Cyv + Cw, |V€|2 =
§2+ €2+ &2, and similarly for V[ and [V(|. We

usually used a time step of 0.1, which gave a CFL num-
ber of approximately 20. We would typically run 50
steps of the flow solver (the solid wall boundary condi-
tions are gradually turned on over the first 30 steps),
then introduce a small (order 10~*) nonsymmetric per-
turbation into the flow field. After several thousand
more steps, unsteady vortex shedding becomes appar-
ent. Without the perturbation, many more steps are
required before vortex shedding sets up. See Figure 3
for Mach contours at one cross-flow slice at a particular



time. We typically ran 20000 to 50000 or more steps
to gather enough data for Fourier analysis.

Figure 3: Typical Mach contours at mid-span

We simulated a hot-wire probe by writing out the
crossflow velocity at each time step at selected spanwise
stations. The probe was located about 1/4 mid-span
diameter aft of the cylinder and about 0.4 diameters to
one side of the centerline.

We tested our code by running a nontapered cylin-
der. For Reynolds number 200 we computed the
Strouhal number at several spanwise locations. The
Strouhal number is defined as St = fL/U where f
is the shedding frequency, L is a length scale, and U
is a velocity scale. The shedding frequency was com-
puted by Fourier analysis of the hot-wire signal. At
six selected spanwise locations, the Strouhal numbers
we computed ranged from 0.204 to 0.205 (when we ran
the flow solver using implicit Euler time differencing)
and from 0.206 to 0.208 (when we ran the flow solver
using a three-point implicit time differencing formula).
The Stouhal number for two-dimensional vortex shed-
ding past a circular cylinder at Reynolds number 200
is 0.19, (using the formula from Williamson [14]

St = —3.3265/Re + 0.1816 + 1.6 x 107*Re. (1)

We found a very weak dependence of Strouhal num-
ber on spanwise location, which may be attributable
to the manner in which the boundary conditions at
the top and bottom of the tapered cylinder were im-
plemented. Spectral analysis found no indication of
a low-frequency component in the hot-wire signal, in
contrast to two-dimensional calculations where careful
choice of far-field boundary conditions may be neces-
sary to avoid spurious wave reflections [1, 2].

We also computed the flow past a nontapered cylin-
der at Reynolds number 122.5. Spectral analysis of our
simulated hot-wire data gave Strouhal number 0.185 at

all spanwise locations. The Strouhal number for two-
dimensional vortex shedding past a circular cylinder
at Reynolds number 122.5 is 0.174 (from equation 1).
Again, there was no sign of spurious numerical wave
reflections.

We studied the effect of various numerical parame-
ters on the computed flow past a cylinder with taper
ratio 0.01 and Reynolds number ranging from 100 to
145 (Reynolds number 122.5 at mid-span). For time
differencing we used either implicit Euler or the three-
point implicit method with § = 1, ¢ = 1/2; we used
meshes of size 64 x 64 x 32, 64x64x64, and 64 x 64 x 128;
we used time steps At € {0.1,0.2,0.4}; and the outer
boundary location was taken at 24 or 48 mid-span di-
ameters. The distance from the body to the first grid
line in the normal direction was taken to be 0.005 mid-
span diameters. In all these cases the general features
of the flow were the same, at least judging by the hot-
wire data; there were some quantitative differences in
the spectral peaks with At = 0.2 or 0.4. We conclude
that At = 0.1, outer boundary at 24 mid-span diam-
eters, and 32 spanwise points are sufficient to produce
accurate signals for spectral analysis; we also used this
case for flow visualization.

We will show some computed results for a cylinder
with taper ratio 0.01 and Reynolds number range of 90
to 145, the same range as in the experiment of Piccir-
illo [6, 7]. In this particular case we used a 64 x 64 x 64
mesh and three-point implicit time differencing; the
Reynolds number at mid-span is 117.5. A portion of
the simulated hot-wire data is shown in Figure 4 (at
the end of the paper). This output is very similar to
experimental hot-wire signals in Gaster [3], van Atta
and Piccirillo [12] and Piccirillo [6, 7]. Spectral anal-
ysis of the hot-wire data gives the results in Figure 5.
This analysis uses the value of the crossflow velocity
component at 70000 time steps at each of 15 selected
spanwise stations. One can see the strictly periodic
nature of the signal at spanwise station 4. A much
lower frequency modulation is just visible at spanwise
station 8 and grows in strength as one moves along
the span toward the thinner end of the tapered cylin-
der. When spanwise location 32 is reached, the origi-
nally dominant peak at a nondimensional frequency of
about 0.16 has lost dominance; a new dominant peak at
nondimensional frequency of about 0.175 has replaced
it. This new value of dominant frequency is the sum
of the originally dominant frequency and the low fre-
quency modulation visible on the curves at spanwise
stations 8 through 28. After spanwise station 32, a
peak at nondimensional frequency of about 0.19 gains
strength and becomes dominant by about z = 44 or
z = 48. At z = 52 this peak is still evident but by
z = 56 the power spectrum is of broad band type.



The general features of the spectral analysis for all
our numerical experiments are as follows: single strong
peak at frequency v for hot-wire station near the base
of the cylinder (periodic vortex shedding); emerging
second peak at frequency v; > vy and small secondary
peak at frequency vy — vy as we move up along the
cylinder; eventually the two frequencies vy and v; have
equal energy, then frequency v; becomes dominant;
then (depending on spanwise resolution) a third fre-
quency vy > v1 may emerge as the dominant frequency;
and finally a regime where the spectral analysis shows
a broad peak and it is difficult to single out a dominant
frequency.

One of our other numerical experiments was a cylin-
der with taper ratio 0.01 and a Reynolds number range
of 50 to 150. There was no change in the qualitative
behavior of the solution. Another case we ran was a
cylinder with taper ratio 0.001 and Reynolds number
ranging from 105 to 115. In this case we observed
one dominant frequency vg across the entire span of
the cylinder, with a second frequency v; beginning to
emerge toward the thin end of the tapered cylinder.

5 Flow Visualization

The three-dimensional unsteady flow visualization was
carried out in three stages. First the full solution at
every tenth time step was saved to the attached disk
on the Connection Machine. This resulted in about
3.5 x 10° bytes of saved solution data for a typical
long run. Next, a program was run that generated
streaksurfaces by advecting a large number of “bub-
bles” (ideal infinitesimal fluid elements) through the
changing velocity field. The bubbles were emitted from
“bubble wires” whose location was chosen at the begin-
ning of this advection stage.

For most of our visualizations, two bubble wires were
used. Each wire emitted 128 new bubbles at every time
step. One wire ran along one side of the cylinder body,
near the “left” separation line, and another ran along
the other side of the cylinder body, near the “right”
separation line'. For studies of the large scale flow
structure, the bubble wires ran almost the whole length
of the cylinder, whereas for the detailed studies of the
vortex “dislocation” phenomena, the bubble wires ran
only about one sixth the length of the cylinder.

The Connection Machine implementation of the ad-
vection algorithm is interesting. It makes use of two
“virtual processor sets” (VP sets). VP set number one

1 Actually, the instantaneous separation “lines” on the tapered
cylinder are not lines at all, but gently waving curves that move
with time. However, they do not move very far, and the bubble
wire positions were fixed just downstream of the separation lines’
extreme location

typically has 128K virtual processors — one VP per grid-
point — and holds velocity field data for the two solution
time steps involved in one advection step. A second
order Runge-Kutta algorithm with a fixed time step
is used for advection with all positions and velocities
maintained in computational coodinates. VP set num-
ber two consists of one VP per bubble. The number of
active processors in this VP set grows as new bubbles
are emitted, and shrinks when particles travel off the
edge of the computational grid. A maximum of 32K
bubbles were advected at each time step, with the very
oldest being removed from the flow when necessary in
order to be recycled.

At every step of the advection, interprocessor com-
munication between the two VP sets is required. Each
bubble (in VP set 2) must get the velocity vectors from
the eight corners of the grid cell (in VP set 1) that it
is currently passing through. Trilinear interpolation is
used to define the velocity at each bubble’s position.
This happens twice per step, once for each substep of
the Runge-Kutta time advance. Once the bubble’s new
computational space position is known, it gathers its
physical position information from VP set 1 in a simi-
lar manner, and uses trilinear interpolation to compute
its physical (2, y, z) location. The updated particle po-
sitions are visible on the CM frame buffer during this
procedure, and the 3D view can be transformed using
the mouse in real time. The physical locations of all
currently active particles are also appended to a disk
file at the end of every advection step. Typically, af-
ter about one hour and 1000 advection steps, the file
contains about 4 x 10® bytes.

The final step of the visualization process involves
reading some large segment of this file (typically sev-
eral hundred advection steps worth) into the Connec-
tion Machine at one time. Then, as time advances, the
three dimensional positions of all the bubbles active at
any time step are transformed via a typical perspective
projection and displayed on the CM frame buffer. Bub-
bles can be colored according to the wire that emitted
them, or by their age. The frame-rate while playing
back these three dimensional streaksurface movies is
around 20 frames per second. Position, scale, and 3D
rotations are controlled by the mouse in real time. The
flow movie can be stopped, rotated, and continued on
demand.

While the raw floating point performance of the Con-
nection Machine during the advection phase is rather
poor, the complete system can produce a richly detailed
unsteady three dimensional flow visualization running
at 20 frames per second with the three dimensional view
under real time control, from several gigabytes of data,
in about an hour. See [10] for more information about
flow visualization on the Connection Machine.



Flow visualization of the computed solution fields for
unsteady flow past a tapered cylinder reveals unsteady
vortex shedding with the vortices being shed at an an-
gle (not parallel) to the cylinder. The visualization
shows events that are consistent with the “dislocation”
events discussed in [14]. In Figure 6 we show a sequence
of frames from the flow visualization. The cylinder is
on the left, with the thicker end at the bottom, and flow
is from left to right. The portion of the cylinder from
spanwise station 18 to spanwise station 24 is shown.
Particles are being released from only one side of the
cylinder. Reading down the figure, first the left half
and then the right, we see the oblique shedding and
then the dislocation event.

6 Discussion

Let us first make a comment on the fact, observed both
experimentally and computationally, that the shedding
frequency increases as we move from the thick end
of the cylinder toward the thin end, i.e., as the local
Reynolds number decreases. This may seem counter-
intuitive, since we know that Strouhal number de-
creases as the Reynolds number decreases. But con-
sider, from the definitions St = fL/U and Re = UL/v,
and from the experimental determination that St =

(A — B/Re), we can derive
f=USt/L =U?St/(vRe) = (U*/vRe)(A — B/Re).

With the experimentally determined values of A =
0.215 and B = 5.1064 ([14]), we can easily see that f
decreases as Re increases as long as Re > 2B/A ~ 47.0.
Thus the shedding frequency decreases as the Reynolds
number increases, at least for the range of Reynolds
numbers we are considering.

The spectral analysis of our computed results, as ex-
emplified in Figure 5, is consistent with the results of [6]
and [7]. The flow field near the cylinder may be thought
of as being partitioned into spanwise “cells”, where a
cell is defined purely in spectral terms as that spanwise
region where a certain frequency is dominant. Thus
in Figure 5, one cell extends from the bottom of the
cylinder up to about spanwise station 32. At spanwise
station 32 a different (higher) frequency has become
dominant, and this frequency retains its dominance up
to about spanwise station 44. At spanwise station 48 a
third higher frequency has become dominant; this fre-
quency remains dominant up to about spanwise station
56, after which the spectral peak is quite broad and no
single frequency is dominant.

We can attempt to define a Strouhal number for this
flow problem using the spectral analysis. Given a spec-
tral analysis P(f) vs. f of power vs. frequency, we can

Generalized Strouhal number
Span station | Local Re St* St (2D)
4 137.2282 | 0.1856 | 0.1793
8 134.3586 | 0.1818 | 0.1783
12 131.4890 | 0.1779 | 0.1773
16 128.6195 | 0.1740 | 0.1763
20 125.7499 | 0.1704 | 0.1752
24 122.8804 | 0.1671 | 0.1741
28 120.0108 | 0.1656 | 0.1730
32 117.1413 | 0.1699 | 0.1719
36 114.2717 | 0.1702 | 0.1707
40 111.4021 | 0.1671 | 0.1695
44 108.5326 | 0.1666 | 0.1683
48 105.6630 | 0.1674 | 0.1670
52 102.7935 | 0.1660 | 0.1656
56 99.9239 | 0.1643 | 0.1642
60 97.0543 | 0.1657 | 0.1628

Table 1: Generalized Strouhal number calculation for
3D tapered cylinder.

define a “generalized Strouhal number” St* via

st = (w/0) | (s / / P

where L is a local length scale, and the upper limit of
integration is chosen (by hand) so that the region from
0 to v contains the first major peak in the spectrum. If
we carry out this calculation for the data shown in Fig-
ure 5 we obtain Table 1 (the frequency data in Figure 5
are already normalized by 1/U).

In Table 1 the Strouhal number for two-dimensional
cylinder shedding is computed from the empirical for-
mula of equation 1. In all cases the difference be-
tween the “generalized Strouhal number” St* and the
Strouhal number from two-dimensional experiments is
less than a few percent. This data and data from our
other computational experiments are consistent with
the hypothesis that the flow in the wake of a tapered
cylinder close to the body has its shedding frequency
determined by the two-dimensional Strouhal number.
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Crossflow velocity component

Portion of hot-wire signal (Taper ratio=0.01, Re:90-145)
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Figure 4: Hot-wire signals (actually cross-flow velocity component)




Power spectrum (Taper ratio=0.01, Re:90-145)
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Figure 5: Spectral analysis of simulated hot-wire, from z = 4 (thick end of cylinder) to z = 60 (thin end of
cylinder)
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Figure 6: Flow visualization. Particles are released from one side of cylinder. Reading from top to bottom and
left to right, the frames are at nondimensional times ¢t = 0,50, 100, 150, 175,185,195, 215. During this time eight
vortices are shed from the top of the section and seven from the bottom. At the beginning and end of this
sequence, vortices are being shed coherently across this section of the cylinder. The intermediate frames illustrate
the vortex dislocation process.
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